Chapter 2: The Transpose of a Derivative

Will you allow me a little calculus? This is really linear algebra for functions $x(t)$. The matrix changes to a derivative so $\boldsymbol{A}=\boldsymbol{d} / \boldsymbol{d t}$. To find the transpose of this unusual A we need to define the inner product between two functions $x(t)$ and $y(t)$.

The inner product changes from the sum of $x_{k} y_{k}$ to the integral of $x(t) y(t)$.

Inner product of functions

$$
x^{\mathrm{T}} y=(x, y)=\int_{-\infty}^{\infty} x(t) y(t) d t
$$

The transpose of a matrix has $(A \boldsymbol{x})^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{x}^{\mathrm{T}}\left(A^{\mathrm{T}} \boldsymbol{y}\right)$. The "adjoint" of $A=\frac{d}{d t}$ has

$$
(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{y})=\int_{-\infty}^{\infty} \frac{d x}{d t} y(t) d t=\int_{-\infty}^{\infty} x(t)\left(-\frac{d y}{d t}\right) d t=\left(\boldsymbol{x}, \boldsymbol{A}^{\mathbf{T}} \boldsymbol{y}\right)
$$

I hope you recognize integration by parts. The derivative moves from the first function $x(t)$ to the second function $y(t)$. During that move, a minus sign appears. This tells us that the adjoint (transpose) of the derivative is minus the derivative.

The derivative is antisymmetric: $A=d / d t$ and $A^{\mathrm{T}}=-\boldsymbol{d} / \boldsymbol{d t}$. Symmetric matrices have $S^{\mathrm{T}}=S$, antisymmetric matrices have $A^{\mathrm{T}}=-A$. $S=(d / d t)^{2}$ is symmetric :

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right] \quad \text { transposes to } \quad A^{\mathrm{T}}=\left[\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]=-A
$$

And a forward difference matrix transposes to a backward difference matrix, multiplied by -1 . In differential equations, the second derivative (acceleration) is symmetric. The first derivative (damping proportional to velocity) is antisymmetric.

